
Kernel Regressions and 
increasing OS noise

Christoph Lameter, Ph.D.
TAB, The Linux Foundation



Overview

● Intro
● What is a regression?
● Effects of regressions
● OS Noise characteristics
● Latency troubles
● Kernel bloat causing regressions
● Solutions (....)
● Conclusion



Regressions

• Functionality and/or OS performance in 
later version is worse than in earlier versions.

• We used to track Kernel regressions 
between versions.

• Always had consistently regresssions in 
performance over time aside from areas 
where we did targeted performance 
optimizations.

• For some industries wrong focus: We need 
low latency not high performance. 
“Optimizations” make things worse.



HPC / Gaming / Financials and 
Latency

• HPC apps need regular intervals to perform a 
rendezvous in order to reach high performance.

• Gaming: The low latency player wins.

• Financials: Latency determines who can make a 
trade.

• Situation is that old kernels are run instead of newer 
ones because of regressions (RHEL3 and RHEL4 
popular). 64 bit: No thanks.

• Currently three to fourfold latencies(!!!) due to 
regressions in multiple subsystems.

• Only loosers run upstream....



OS Noise

•Application experiences random delays.

•On the application CPU the following may occur:
• Scheduling of OS threads
• Hardware interrupts
• Faults (page faults?)
• Timers trigger
• Scheduler may run other tasks

• Disturbances increase with higher scheduling 
frequency.

• Lower scheduling frequency makes the delays longer 
that an application sees.



Low Latency tools (gentwo.org/ll)

•latencytest: An OS noise measurement tool
• Number of OS reschedules
• Number of Faults
• Holdoffs and their frequency

•udpping:  Measure minimum communication 
latencies.

•mcast : Multicast latency and stress testing.



Noise created by the Linux OS

2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of variances



Length of Noise periods (microseconds)

2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29
0

0.5

1

1.5

2

2.5

Average length of interruption



Scheduler interventions

2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29
0

10

20

30

40

50

60

70

80

Number of scheduler context changes



UDP ping pong times (microseconds)

2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29
84

86

88

90

92

94

96

98

100

102



Multicast latency regressions

10pps 100pps 1000pps 10000pps
25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

Single Hop Multicast Latency

Microseconds

Linux 2.6.22
Linux 2.6.31

Packets per second



Latency regressions

• Loss of 2-3 microseconds in 10 kernel 
releases.

• 64 bit kernels show much higher variance. 
Caused by larger icache footprint is 
higher.

• Issues exist at low message frequencies 
due to more advanced power savings 
logic in newer kernels.



Latency countermeasure

• Prefaulting

• Warming up caches

• Pinning

• Rt priorities

• Thread local variables

• Run old software (RH3, RH4?)

• Restrict OS scheduling to subset of CPUs.



Measures to reduce OS noice

 Process pinning: taskset
 Realtime priorities: chrt
 Prefaulting pages
 Cache prepopulation
 OS features off
 Smaller cache footprint
 OS should not defer processing.



OS bypass

• Atomic ops in user space

• Polling instead of sleeping

• Virtual NIC in user space

• Infiniband RDMA

• Packet MMAPed sockets

• User space RX and TX buffers

• Custom offload libraries



Software bloat

• Featuritis: Over time software always adds 
more features to satisfy various needs.

• Caching schemes introduces to increase 
heavy callers of functions.

• Penalizing infrequent callers.

• “Performance” increases, software slower.

• Cache footprint grows bigger. Penalties if 
L1 cache overused.



Kernel bloat/AIM9 regressions

2.6.22 2.6.23 2.6.24 2.6.25 2.6.26 2.6.27 2.6.28 2.6.29
0.00

100.00

200.00

300.00

400.00

500.00

600.00

creat-clo
page_test



Plans to address regressions

• Advanced features to control affinity of 
queuing in network stack.

• Deadline scheduling algorithm?

• Enable NUMA options?

• Do not schedule on a subset of 
processors?

• Move noise to a single processor (0)?

• Add more features that require 
complexity?



 Things to do

● Track latencies and kernel performance over 
long time periods

● Establish better tools to measure OS noise.
● “Its in the noise” is really saying that a change 

may cause additional latencies.
● Feedback to OS developers re OS noise
● Establish latencies for critical OS paths and 

benchmark newly released kernels.



End

• Questions

• Maybe answers?



Time and Space considerations for 
Latencies

• Latencies are bound with distances due 
to relativistic speed issues. Nothing 
violates the speed of light.

• Latencies limit system design and 
processing speed.

• Signal propagation speeds limit system 
sizes and create NUMA latency issues.

• Only some latencies can be avoided.

• Bandwidth increases instead of Speed 
increases.



1 second

• Time needed for a signal to reach the 
moon.

• Upper bound on any reasonable 
network latency.

• VM statistics interval in the Linux 
kernel.

• High performance counters are only 
guaranteed to be upto date after 
one second.



100 milliseconds

• A signal can reach all of the earths 
surface.

• High speed consumer link latency

• Half of TCP retry interval.

• Minimum human reaction speed.

• Frequently used timeout for devices.



10 milliseconds

• 2000 km distance. Signal can reach 
surrounding metropolitan area.

• Timer interrupt for systems with 100HZ.

• Major page fault (page read in from 
disk)

• Time interval for a process to receive 
another time slice if another process has 
to be run first.



1 milisecond

• 200km distance. Systems in your city.

• Sound travels 34 centimeters. Sound from 
the speakers reach your ear.

• Seek time of harddisks.

• Max camera shutter speed.



100 microseconds

• 20km. Signal confined to LAN or building.

• Maximum tolerable interrupt hold off.

• Ethernet ping pong times in a LAN via 
1Gb/s networking.



10 microseconds

• 2km. Signal confined to a LAN.

• Relativistic time distortion in GPS

• Minor page fault (Copy on write)

• Duration of timer interrupt

• Duration of hardware interrupt

• Typical IRQ holdoff.

• Duration of system call.

• Context switch.



1 microsecond

• 200m.

• Wire segment delay.

• Signal stays within a system.

• Resolution of gettimeofday() system call.

• PTE miss and reloading of TLB.

• Start of hardware interrupt processing.



100 nanoseconds

• 20m. Within the room.

• Cache miss. Time needed to fetch 
data from memory.

• TLB miss.



Shot but not dead
Or the miraculous resurrection...

• Video gaming across a LAN.

• Two gamers access the same game server.

• Game data propagates according to the distance.

• Gamer with long latency can shoot and the enemy will die 
on his screen since his system knows the position of the 
enemy.

• But at the time that the notification of this event reaches the 
server the other player has already made several other 
moves.

• So the game server reckons it was a miss and the enemy who 
just died a horrible death is miraculously resurrected and 
escapes.


	Title
	Overview
	Regressions intro
	Industries
	OS noise
	Measurement tools
	Interruptions
	Periods
	Scheduler Interventions
	UDP ping pong
	Multicast latencies
	Latency regressions
	Latency countermeasures
	Measures to reduce OS noise
	OS bypass
	Bloat
	Kernel bloat
	Plans
	Todo
	Slide 20
	Time and Space
	1 second
	100 miliseconds
	10 milliseconds
	1 millisecond
	100 microseconds
	10 microseconds
	1 microsecond
	100 nanoseconds
	Shot but not dead

