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Regressions

• Functionality and/or OS performance in 
later version is worse than in earlier versions.

• We used to track Kernel regressions 
between versions.

• Always had consistently regresssions in 
performance over time aside from areas 
where we did targeted performance 
optimizations.

• For some industries wrong focus: We need 
low latency not high performance. 
“Optimizations” make things worse.



HPC / Gaming / Financials and 
Latency

• HPC apps need regular intervals to perform a 
rendezvous in order to reach high performance.

• Gaming: The low latency player wins.

• Financials: Latency determines who can make a 
trade.

• Situation is that old kernels are run instead of newer 
ones because of regressions (RHEL3 and RHEL4 
popular). 64 bit: No thanks.

• Currently three to fourfold latencies(!!!) due to 
regressions in multiple subsystems.

• Only loosers run upstream....



OS Noise

•Application experiences random delays.

•On the application CPU the following may occur:
• Scheduling of OS threads
• Hardware interrupts
• Faults (page faults?)
• Timers trigger
• Scheduler may run other tasks

• Disturbances increase with higher scheduling 
frequency.

• Lower scheduling frequency makes the delays longer 
that an application sees.



Low Latency tools (gentwo.org/ll)

•latencytest: An OS noise measurement tool
• Number of OS reschedules
• Number of Faults
• Holdoffs and their frequency

•udpping:  Measure minimum communication 
latencies.

•mcast : Multicast latency and stress testing.



Noise created by the Linux OS
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Length of Noise periods (microseconds)
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Scheduler interventions
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UDP ping pong times (microseconds)
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Multicast latency regressions
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Latency regressions

• Loss of 2-3 microseconds in 10 kernel 
releases.

• 64 bit kernels show much higher variance. 
Caused by larger icache footprint is 
higher.

• Issues exist at low message frequencies 
due to more advanced power savings 
logic in newer kernels.



Latency countermeasure

• Prefaulting

• Warming up caches

• Pinning

• Rt priorities

• Thread local variables

• Run old software (RH3, RH4?)

• Restrict OS scheduling to subset of CPUs.



Measures to reduce OS noice

 Process pinning: taskset
 Realtime priorities: chrt
 Prefaulting pages
 Cache prepopulation
 OS features off
 Smaller cache footprint
 OS should not defer processing.



OS bypass

• Atomic ops in user space

• Polling instead of sleeping

• Virtual NIC in user space

• Infiniband RDMA

• Packet MMAPed sockets

• User space RX and TX buffers

• Custom offload libraries



Software bloat

• Featuritis: Over time software always adds 
more features to satisfy various needs.

• Caching schemes introduces to increase 
heavy callers of functions.

• Penalizing infrequent callers.

• “Performance” increases, software slower.

• Cache footprint grows bigger. Penalties if 
L1 cache overused.



Kernel bloat/AIM9 regressions
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Plans to address regressions

• Advanced features to control affinity of 
queuing in network stack.

• Deadline scheduling algorithm?

• Enable NUMA options?

• Do not schedule on a subset of 
processors?

• Move noise to a single processor (0)?

• Add more features that require 
complexity?



 Things to do

● Track latencies and kernel performance over 
long time periods

● Establish better tools to measure OS noise.
● “Its in the noise” is really saying that a change 

may cause additional latencies.
● Feedback to OS developers re OS noise
● Establish latencies for critical OS paths and 

benchmark newly released kernels.



End

• Questions

• Maybe answers?



Time and Space considerations for 
Latencies

• Latencies are bound with distances due 
to relativistic speed issues. Nothing 
violates the speed of light.

• Latencies limit system design and 
processing speed.

• Signal propagation speeds limit system 
sizes and create NUMA latency issues.

• Only some latencies can be avoided.

• Bandwidth increases instead of Speed 
increases.



1 second

• Time needed for a signal to reach the 
moon.

• Upper bound on any reasonable 
network latency.

• VM statistics interval in the Linux 
kernel.

• High performance counters are only 
guaranteed to be upto date after 
one second.



100 milliseconds

• A signal can reach all of the earths 
surface.

• High speed consumer link latency

• Half of TCP retry interval.

• Minimum human reaction speed.

• Frequently used timeout for devices.



10 milliseconds

• 2000 km distance. Signal can reach 
surrounding metropolitan area.

• Timer interrupt for systems with 100HZ.

• Major page fault (page read in from 
disk)

• Time interval for a process to receive 
another time slice if another process has 
to be run first.



1 milisecond

• 200km distance. Systems in your city.

• Sound travels 34 centimeters. Sound from 
the speakers reach your ear.

• Seek time of harddisks.

• Max camera shutter speed.



100 microseconds

• 20km. Signal confined to LAN or building.

• Maximum tolerable interrupt hold off.

• Ethernet ping pong times in a LAN via 
1Gb/s networking.



10 microseconds

• 2km. Signal confined to a LAN.

• Relativistic time distortion in GPS

• Minor page fault (Copy on write)

• Duration of timer interrupt

• Duration of hardware interrupt

• Typical IRQ holdoff.

• Duration of system call.

• Context switch.



1 microsecond

• 200m.

• Wire segment delay.

• Signal stays within a system.

• Resolution of gettimeofday() system call.

• PTE miss and reloading of TLB.

• Start of hardware interrupt processing.



100 nanoseconds

• 20m. Within the room.

• Cache miss. Time needed to fetch 
data from memory.

• TLB miss.



Shot but not dead
Or the miraculous resurrection...

• Video gaming across a LAN.

• Two gamers access the same game server.

• Game data propagates according to the distance.

• Gamer with long latency can shoot and the enemy will die 
on his screen since his system knows the position of the 
enemy.

• But at the time that the notification of this event reaches the 
server the other player has already made several other 
moves.

• So the game server reckons it was a miss and the enemy who 
just died a horrible death is miraculously resurrected and 
escapes.
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