
Scaling Linux to very high 
number of processors

Christoph Lameter

The question of how well Linux scales to 
higher processor counts was brought up 
on the list for the Kernel Summit. This 
talk will give an overview of the issues 

systems with a high number of
processors are facing under Linux.



Threads and Nodes

● SMP is becoming common. Even laptops 
are now dual core.

● Typical servers have an ever increasing 
number of processors. 16p?

● Multiple memory busses. Memory at 
various distances (NUMA)

● Some introductory NUMA stuff at 
http://ftp.kernel.org/pub/linux/kernel/pe
ople/christoph/pmig/numamemory.pdf



Multiprocessor Scaling

● Distributing the computing load
● Independent execution context
● Everything common (shared) is bad for 

scalability (bus, memory, locks)
● But we need a shared bus and 

memory so that the system can work 
as a whole.

● Node to node interconnect
● Per cpu structures
● Per node structures



Scaling Limits

● 4-8p with just a single memory bus. 
Some 16p and 32p solutions.

● Larger system require NUMA 
interconnect. Scalability mostly 
determined by interconnect.

● Tight packing decreases latency 
(Opteron onboard NUMA)

● Longer distances allow larger systems 
(SGI Altix).

● The bigger the more distant memory



Altix NUMA Scaling

● 32p, 64p, 512p pretty common 
installations. 2p per node.

● Partitioning. Number of SSIs.
● Newest Itanium product line: 1024 node
● SUSE certified.
● Current design is for 1024 nodes / 4096 

processors. Montecito delays result in 
only 1024 processors so far.



Some performance numbers

● New SGI blade architecture
● 1024 node, one processor per node
● Itanium Madison 9M processors.
● 8 Terabyte of main memory (8 GB per 

node).
● 6.4Gbyte/sec switched fabric 

interconnect.
● Bootup 30 minutes to about an hour.
● Time of allocating 100MB in seconds for 

a given processor count.



Memalloc: Parallel processes

1 2 4 8 16 32 64 128 256 512 1024
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18



Memalloc: Threaded app

1 2 4 8 16 32 64 128 256 512 1024
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



Issues

● Larger system (>64p) may have 
issues with lock contention for some 
workloads (radix tree, dcache, inode 
locks).

● Long boot time: Memory initialization 
and device initialization.

● Memory balancing, control of memory.
● MTBF is reduced. It would be good to 

have the ability for a node or memory 
to fail.



Future Problems

● Sparsely populated per cpu and per 
node arrays.

● The number of per node/cpu objects in 
some kernel subsystems grows 
excessively.

● Need to replicate memory to avoid off 
node access? (40% for some apps!)

● 4K pagesize for i386 and x86_64 will 
result in significant TLB pressure for 
large memory sizes.



Conclusion

● The real challenge at 1024-4096 
processors for now

● Hardware issues are significant.
● The OS seems to be mostly okay below 

1024p.
● A list of remaining kinks (policies, better 

scheduling, control over memory etc).
● NUMA scheduler (get too complex, user 

space?)


