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Overview

Some example of the use of High Performance 
Computing
Computer Architectures in use for HPC Computing

Cluster
Supercomputer
Mainframe

Scaling Linux on a Supercomputer.
Memory management 

NUMA
VM tuning

Memory Control
Application allocation control
Migrating Memory

Performance numbers
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NASA Columbia Supercomputer with 10240 processors
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Dark Matter Halo Simulation for the Milky Way
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Black Hole Simulation
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Carbon Nanotube-polymer composite material
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Forecast of Hurrican Katrina
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Airflow Simulations



9

Applications of High Performance Computing

Solve complex computationally expensive problems
Scientific Research

Physics (quantum mechanics, nuclear phenomena)
Cosmology
Space
Biology (gene analysis, virus, bacteria etc)

Simulations
Weather (Hurricanes)
Study of molecules and new substances

Complex data analysis
3D design

Interactive modeling (f.e. car design, aircraft design)
Structural analysis.
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High Performance Computer Architectures

Supercomputer
Single memory space
NUMA architecture. Memory nodes / Distant memory.
Challenge to scale the Operating System

Cluster
Multiple memory spaces
Networked commodity servers
Network communication critical for performance
Challenge to redesign applications for a cluster

Mainframe
Singe uniform memory space with multiple processors
Scalable I/O subsystem
Mainly targed to I/O transactions
Reliable and maintainable (24 by 7 availability)
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Linux on Supercomputers

Operating System enhancements are needed for 
Supercomputers support.
Processors

8 processor to thousands (10K @NASA) at the high end.

Memory
32GB to 16TB (plans exist to support at least 1 Peta byte 
of main memory in the near term future)

Physical size
Large Rack to customized buildings (f.e. LRZ Munich, 
NASA, APAC Australia)

I/O
Large Storage farms with hundreds of petabytes of hard 
disk store
Robotic systems to access archives of tapes for long 
term storage
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Single Processor System

Processor

I/O
Subsystem

 Memory

Cachelines 

All computation on a 
single processor
Only parallelism that 
needs to be managed is 
with the I/O subsystem
Memory is slow 
compared to the 
processor.
Speed of the system 
depends on the 
effectiveness of the 
cache
Memory accesses have 
the same performance.
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Symmetric Multi Processing (SMP)

Multiple processors
New need for 
synchronization between 
processors
Cache control issues
Performance enhancement 
through multiple processors 
working independently
Cacheline contention
Data layout challenges: 
shared vs. processor local
All memory access have the 
same performance

CPU 1

 Memory

CPU 2

Cachelines 

Storage
Subsystem
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Non Uniform Memory Architecture (NUMA)

CPU 1 Remote Memory

CPU 2 Cachelines 
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Node 1

CPU 3 Local Memory

CPU 4 Cachelines 

Node 2

CPU 5 Remote Memory

CPU 6 Cachelines 

Node 3

CPU 7 Remote Memory

CPU 8 Cachelines 

Node 4

Storage
Subsystem

Network
Interface

• Multiple SMP like 
systems called 
“nodes”

• Memory at various 
distances (NUMA)

• Interconnect
• MESI type cache 

coherency protocols
• SLIT tables
• Memory Placement
• Node Local from node 

2 processor 3
• Device Local
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Scaling up Linux

Per cpu areas
Per node structures
Memory allocators aware of distance to memory
Lock splitting
Cache line optimization
Memory allocation control from user space
Sharing is a problem
Local Memory is the best
Larger distances mean larger systems are possible
The bigger the system the smaller the portion of local 
memory.
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Allocators for a Uniform Memory Architecture

Page Chunks
Page allocator
Anonymous memory
File backed memory
Swapping
Slab allocator
Device DMA allocator
Page Cache
read() / write()
Mmapped I/O.

Process
Memory

Page
Allocator

PCI
Subsystem

Slab
allocator

Vmalloc

Anonymous
PagesPage Cache

Buffers

Device Drivers

Kernel Core



17

UMA Memory Reclaim

Anonymous memory freed 
when a process terminates
Mapped file backed pages 
become unmapped but are not 
freed. So unmapped file pages 
accumulate.
If memory runs low the 
swapper begins reclaim of 
memory.
Light reclaim just frees 
unmapped file pages.
If memory stays tight then 
memory may be unmapped 
which will allow the freeing of 
mapped file backed pages and 
the swapping out of anonymous 
pages. 

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory
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NUMA Allocators

Memory management per node
Memory state and possibilities of allocation
Traversal of the zonelist (or nodelist)
Process location vs. memory allocation
Scheduler interactions
Predicting memory use?
Memory load balancing
Support to shift the memory load
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NUMA standard reclaim

Reclaim is a global reclaim.

Reclaim only active if total free memory becomes low

No local reclaim results in lots of node allocations
Off node allocations occur until all the nodes are out of memory. On a 
large NUMA system this can seem to never occur.
The overhead of remote memory access becomes excessively large.

One technique used in the past is to manually drop the pagecache.

Anonymous Memory
Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory

Anonymous Memory

Mapped File backed Pages

Unmapped file pages (Pagecache)

Free Memory
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Modes of Cache lines
Shared
Exclusive

Cache Lines
Efficiency
Optimization
Bouncing

Special Operations
Read Modify Write

CPU 1

Memory organized in
128 byte cachelines

CPU 2

CPU 3

Shared (Read Only)

Exclusive

Atomic Operations can 
be performed on a 
cacheline if a cpu has 
exclusive ownership of a 
cache line

Cache lines influence Performance



21

Spinlock Behavior

Protected Data
Critical Sections
Locking
Unlocking
Exclusive Cache line use 
vs. Shared Cache line
Bouncing Cachelines
Spinlocks under 
contention

Crit. Section
accessing

data protected
by Spinlock

Write Barrier
Lockval = 0

Atomic
Operation

lockval 0 -> 1
Read Barrier

Wait while 
lockval != 0

The atomic state 
transition of the lockval 
from 0 to 1 is realized 
through a CMPXCHG. 
If it fails then the 
processor waits in the 
blue area for lock 
release.

Green areas require 
exclusive cache lines
The blue area requires 
only a shared cache 
line.

Data structure
protected by the Spinlock 
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Reader/Writer Spinlocks

Lock value
>0 -> nr readers
<0 writer
0 free

Needs
2x Cmpxchg
2x Fetchadd
Clear Bit 31 
(byte store 
instead?)

Performance 
worse than 
regular spinlock

Critical 
Section

lockval clear bit 31

lockval
 0 -> 0x8000

Writer

Wait

Critical 
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0

Readers

Critical 
Section

lockval--

lockval++
>0

lockval--
Wait till

 lockval >=0



23

Parallel processes with independent memory spaces 
allocating 100 Megabytes concurrently
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Threads in a single memory space allocating 100 
Megabytes concurrently
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