hrtimers and beyond

transformation of the
Linux time(r) system

Thomas Gleixner
Douglas Niehaus

OLS 2006

Original time(r) system

Arch 1
Timekeeping <« » TOD Clock source HW
|
Tick < | ISR Clock event source HW
Process acc. Arch 2
TOD Clock source HW
Profiling
A4 | ISR Clock event source HW
Jiffies ‘
i 3 Arch 3
Timer wheel 3 TOD Clock source HW
ISR Clock event source HW

History

* double linked list sorted by expiry time
 UTIME (1996)

* timer wheel (1997)

 HRT (2001)

* hrtimers (2006)

Timer Wheel

* periodic tick necessary
* O(1) insertion / deletion

* recascading in bursts (can cause high
latencies)

* higher tick frequencies don't scale due
to long lasting timer callbacks and
iIncreased recascading

Cascading

tv3 tvd vl

- relative jiffies >

(S

Cascading

100
256 10
64 2560
64 164
64 175
64 186

250
4
1024
66
/70
75

1000

256
16
17
19

HZ
ms
ms

> 3 o

Cascading

CONFIG_BASE_SMALL=y

OB =

604
16
16
16
16

100
10
640
10240
164
44

250
4
256
4096
66
17

1000
:

64
1024
16

4

HZ
ms
ms
ms
S
m

Cascading

* array sizes have to be chosen carefully
taking tick frequency into account

* rare (multiple) cascades increase latency

—use cases have to be analysed to
avoid problematic cascading

* separating timers with high accuracy
requirement from coarse grained
timeouts will relax the situation

timers vs. timeouts

timers timeouts
* precise event * report error
scheduling conditions
* accurate * coarser grained

* likely to expire * likely to be
removed before
expiration

History of high resolution timers

 UTIME — KURT-Linux
- University of Kansas

* HRT — fork of UTIME

- Monta Vista
e Hrtimers

- Linutronix

Why hrtimers ?

 UTIME and HRT added a subjiffy field
- Kept jiffy ticks by design to avoid
broader kernel change impact

- Modes: on top of the timer wheel or
separate high-resolution event list

* HRT moved high resolution timers into
a separate list one tick before expiry

- Suffered from timer wheel latencies

hrtimers

* timers inserted into a red-black tree
sorted by expiration time

* separate queue for each base clock,
which allowed simplifying POSIX timers

* base code is still tick driven (softirq Is
called in the timer softirq context)

* time values are kept in new data type
ktime_t (using nanosecond base)

ktime t

* optimizable data type for both 32 and
64 bit machines

* plain nanosecond value on 64 bit CPU

* (seconds, nanoseconds) pair on 32 bit
CPUs with field order allowing
(depending on the endianess) 64 bit
add, subtract, compare operations.

hriimer users

* nanosleep

* itimer

* POSIX timers

* timed futex operations

hrtimers

Arch 1
« — Timekeeping <« » TOD Clock source HW
hrtimers |
«— Tick < | ISR Clock event source HW
Process acc. Arch 2
TOD Clock source HW
Profiling
v | ISR Clock event source HW
Jiffies |
i 3 Arch 3
Timer wheel 3 TOD Clock source HW
ISR Clock event source HW

how to get high resolution timers ?

* solve the tick (jiffy) dependency of
timekeeping

* create a generic framework for next
event interrupt programming

* replace the periodic tick interrupt by
timers under hrtimers

Timekeeping

* Make use of John Stultz's
Generic Time of Day framework

—architecture independent

—generic framework replaces
duplicated architecture code

—better decoupling from tick

hrtimers + GTOD

Shared HW

o

Clock source

<

!

Clock synchr. —» TOD

h 4 v

hrtimers

Timekeeping

Tick

«—— ISR Clock event source HW

!

Process acc.

Profiling

Jiffies

!

Timer wheel

ISR Clock event source HW

Arch 3 HW

clockevents

 Generic infrastructure to distribute
timer related events

—architecture independent

—generic framework replaces
duplicated architecture code

—allows quality based selection of
clock event hardware

hrtimers + GTOD + clockevents

Shared HW ——» Clock source «

I

Clock synchr. —» TOD

. :

<+«— Timekeeping ‘ Arch 1 HW
hrtimers ‘
<4 || Shared HW <« Clock events « | > HW
J SR «
‘ . Arch? HW
Tick < Event distribution 4+
! - HW
Process acc. R
v i
Profiling
v Arch 3 HW
Jiffies .
i e ISR HW
Timer wheel

tick emulation

* Use a per-CPU hrtimer to emulate tick

—update jiffies and NTP adjustments
—-per-CPU calls

* process accounting and profiling

* Allows high resolution timers and/or
dynamic ticks

hriimers + GTOD + clockevents + tick emulation

Shared HW —» Clock source |«

I

Clock synchr. —» TOD

: }

<«— Timekeeping | Arch 1 HW

— hrtimers

Shared HW «—» Clock events « ; > HW

Next event j SR ‘ ,,,,,,,,,,,,,,,,,,
T Dynamic tick i |

Arch 2 HW

Event distribution “
‘ HW
~ » Processacc. |+

> hrtimers > Profiling

Arch 3 HW

P Jiffies o
3 B ISR HW
Timer wheel | - - - - - —

high resolution performance

clock_nanosleep(ABS_TIME)
interval: 10ms

10000 loops

no load

Kernel min max avg
2.6.16 24 4042 1989 us

2.6.16-hrt 12 94 20 us
2.6.16-rt 6 40 10 us

high resolution performance

clock _nanosleep(ABS_TIME)
interval 10ms

10000 loops

100% load
Kernel min max avg
2.6.16 55 4280 2198 us

2.6.16-hrt 11 458 55 us
2.6.16-rt 16 55 20 us

dynamic tick idle behaviour

* timer interrupts reduced to ~1 per
second.

—-Instrumentation to identify the timer
(ab)users to improve the idle sleep
length

timer wheel batching

* run the timer wheel at a lower
frequency than the scheduler tick by

skipping timer wheel processing for a

user space configurable number of
ticks

* Improves interactivity

things to be done

* get It merged (target Is 2.6.19)

* support more architectures
(prototypes for ARM and PPC
available)

* tighter integration into power
management

Conclusions

* significant changes are necessary but
the benefit is significant increases in:

—architecture independent code

—ease of using wide range of time
keeping and timer event hardware

—Increased resolution for scheduled
events when desired

